Determination of the Stereochemistry of the Tetrahydropyran Sesquineolignans Morinols A and B

Satoshi Yamauchi, ${ }^{*, \dagger}$ Takuya Sugahara, ${ }^{\dagger}$ Koichi Akiyama, ${ }^{\ddagger}$ Masafumi Maruyama, ${ }^{\dagger}$ and Taro Kishida ${ }^{\dagger}$
Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan, and Integrated Center for Sciences, Tarumi Station, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 Japan

Received September 18, 2006

The $7^{\prime}, 8^{\prime}$-stereochemistry of the tetrahydropyran sesquineolignans morinols A and B was determined as threo via synthetic studies and by comparison of NMR data of $7^{\prime}, 8^{\prime}$-threo-morinol and $7^{\prime}, 8^{\prime}$-erythro-morinol. This study also confirmed that the biosynthetic process produces enantiomeric mixtures of morinols A and B . This was ascertained by comparing the specific rotations of synthesized morinols A and B with those of naturally occurring morinols A and B.

The unique tetrahydropyran sesquineolignans morinols A and B have been isolated from the Chinese traditional medicinal plant Morina chinensis as a racemic mixture (Figure 1)..1,2 The inhibition of cytokines by morinols A and B and the stronger activity of morinol B than morinol A have also been reported. ${ }^{2}$ This activity of lignans on cytokines is rare, even though many biological activities of naturally occurring lignans are known. ${ }^{3,4}$ The biosynthesis of enantiomeric lignans has also been reported. ${ }^{5}$ Therefore, the synthesis of optically pure lignans is important to determine their precise biological activity. The relationship between lignan structure and biological activity is complex because of numerous combinations of phenylpropanoid units and oxidation patterns. The synthesis and characterization of lignans ${ }^{6}$ are continuing to clarify which structural features of lignans determine biological activity. Morinols A and B were obtained as a racemic mixture from natural sources and used for biological research. The relative configuration of the 7^{\prime} and 8^{\prime} stereocenters are undefined. These facts persuaded us to synthesize optically pure morinols A and B to define their absolute configuration. The success of the synthetic study of morinols A and B would also contribute to research about the structure/activity relationship of tetrahydropyran sesquineolignans. Furthermore, the precise biological activity could be determined and new factors responsible for the biological activity of the novel structure would be clarified. A chiral secondary benzyl alcohol adjacent to another chiral carbon is common in lignan structures. ${ }^{4}$ These functionalities occur in both erythro and threo forms. However, the determination of the relative configuration is problematic. Thus syntheses of $7^{\prime}, 8^{\prime}$-threo-morinols A and B and $7^{\prime}, 8^{\prime}$ -erythro-morinols A and B were performed to determine their stereochemistries.

Results and Discussion

The synthetic plan is shown in Figure 2. The tetrahydropyran ring was obtained by $S_{N} 2$ etherification between the benzyl alcohol and primary mesylate. The C-7 chiral carbon was constructed by a Grignard reaction. The C-8 chiral carbon was asymmetrically introduced by allylation using Evans' chiral auxiliary. The selection of morinol A ($8,8^{\prime}$-cis) type or morinol B ($8,8^{\prime}$-trans) type was achieved by S or R Evans' auxiliary before this allylation. The stereocontrol of erythro or threo between C-7' and C-8' was achieved by an Evans' $s y n^{7}$ or $a n t i^{8}$ selective aldol condensation, respectively. This synthetic strategy could be readily applied to morinol A and B derivatives. Thus, the introduction of a $3^{\prime \prime}, 4^{\prime \prime}-$ dimethoxyphenyl group at $\mathrm{C}-7^{\prime \prime}$ using a Pd catalyst was planned.

[^0]
(+)-Morinol A [(+)-1]

(+)-Morinol B [(+)-2]
(-)-Morinol B [(-)-2]
$\mathrm{Ar}=3,4$-dimethoxyphenyl

Figure 1. Morinol A and morinol B were isolated as enantiomeric mixtures. ${ }^{1,2}$

Figure 2. Synthetic plan of morinols A and B.
This article shows the determination of the stereochemistry of both morinols A and B by their first in vitro synthesis. A new example of lignan biosynthesis as an enantiomeric mixture is also confirmed by comparison of the specific rotations of synthesized morinols A and B with those of previously isolated morinols A and B. ${ }^{1,2}$

The plan for the construction of the tetrahydropyran structure 17, which has the $7^{\prime}, 8^{\prime}$-threo-morinol B configuration, required the synthesis of substrate $\mathbf{1 5}$ (Scheme 1). The chiral carbons of $\mathbf{1 5}$ were introduced by Evans' anti-aldol ${ }^{8}$ condensation, allylation by employing Evans' chiral auxiliary, and a Grignard reaction. The Evans' anti-aldol condensation between 3 and 3,4-dimethoxybenzaldehyde employing $\mathrm{Et}_{3} \mathrm{~N}$, chlorotrimethylsilane, and MgCl_{2} gave 4 (93\% yield), which was transformed to silyl ether 5 by using

Scheme 1. Synthesis of Morinol B^{a}

${ }^{a}$ (a) 5-hexenoic acid, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PivCl}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then lithium salt of (S)-4-benzyl-2-oxazolidinone, THF, from -70 to $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ (80% yield); (b) (1) $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{TMSCl}, \mathrm{MgCl}_{2}, 3,4$-dimethoxybenzaldehyde, EtOAc, rt, 16 h ; (2) TFA, MeOH, rt, 30 min (93% yield); (c) TIPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}$ (91% yield); (d) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, \mathrm{rt}, 6 \mathrm{~h}\left(60 \%\right.$ yield); (e) TrCl, DMAP, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 60^{\circ} \mathrm{C}, 16 \mathrm{~h}\left(81 \%\right.$ yield); (f) (1) OsO_{4}, NMO, aq acetone, tert-BuOH, rt, 16 h ; (2) $\mathrm{NaIO} 4, \mathrm{MeOH}$, $\mathrm{rt}, 3 \mathrm{~h}$; (3) 2-methyl-2-butene, $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaClO}_{2}$, aq tert- $\mathrm{BuOH}, \mathrm{rt}, 1 \mathrm{~h}\left(86 \%\right.$ yield); (g) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PivCl}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then lithium salt of (S)-4-benzyl-2-oxazolidinone, from -70 to $0^{\circ} \mathrm{C}$, $1 \mathrm{~h}\left(88 \%\right.$ yield); (h) KHMDS, allyl bromide, THF, from $-70^{\circ} \mathrm{C}$ to $\mathrm{rt}, 16 \mathrm{~h}$ (50% yield); (i) $\mathrm{LiBH}_{4}, \mathrm{MeOH}$, THF, rt, $1 \mathrm{~h}(89 \%$ yield); (j) PCC, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $16 \mathrm{~h}\left(76 \%\right.$ yield); (k) $3,4-(\mathrm{MeO})_{2} \mathrm{PhMgBr}$, THF, rt, $1 \mathrm{~h}\left(93 \%\right.$ yield); (1) (1) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, rt, 16 h ; (2) $\mathrm{HCO}_{2} \mathrm{H}$, ether, $-5{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}(14: 35 \%$ yield, 15: 38% yield); (m) (1) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (2) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt, 16 h ; (3) $\mathrm{NaH}, \mathrm{DMF}, \mathrm{rt}, 16 \mathrm{~h}$ (70% yield); (n) (1) $\mathrm{MsCl}^{\circ}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30$ \min; (2) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, rt, $16 \mathrm{~h}\left(56 \%\right.$ yield); (o) $1-\mathrm{Br}-3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}(33 \%$ yield, recovered $\mathbf{1 7}, 58 \%)$; (p) $n-\mathrm{Bu} 4 \mathrm{NF}, \mathrm{THF}$, rt, 3 h (100% yield).
triisopropylsilyl triflate and 2,6-lutidine. The trityl ether 7 was obtained by reductive $\left(\mathrm{LiBH}_{4}\right)$ removal of the chiral auxiliary of $\mathbf{5}$ (60% yield) followed by treatment with trityl chloride in pyridine (81% yield). To introduce the Evans' chiral auxiliary, olefin 7 was converted to carboxylic acid $\mathbf{8}$ by OsO_{4} oxidation, then NaIO_{4} oxidation and then NaClO_{2} oxidation (86% yield, three steps). Attachment of S-Evans' chiral auxiliary to carboxylic acid 8 was achieved by coupling of the pivaloic anhydride of carboxylic acid $\mathbf{8}$ with the lithium salt of (S)-4-benzyl-2-oxazolidinone in 88% yield. The stereoselective allylation to 9 was accomplished by employing potassium bis(trimethylsilylamide) and allyl bromide to give $\mathbf{1 0}$ (50% yield) as a single isomer. Formation of the other stereoisomer was not observed. Since the α-allylation to the lactone, which was obtained from 8 by detritylation, gave the diallyl compound, allylation using a chiral auxiliary was adopted. The allylation using sodium bis(trimethylsilylamide) did not give the allyl product. Reductive $\left(\mathrm{LiBH}_{4}\right)$ removal of the chiral auxiliary of $\mathbf{1 0}$ (89% yield) followed by pyridinium chlorochromate oxidation (76% yield) gave aldehyde 12. Treatment of aldehyde 12 with 3,4-dimethoxyphenylmagnesium bromide gave benzyl alcohol $\mathbf{1 3}$ as a $1: 1$ mixture of diastereomers in 93% yield. Detritylation of $\mathbf{1 3}$ using formic acid in ether was accompanied by desilylation, giving the corresponding triol. However, detritylation of acetate of $\mathbf{1 3}$ gave separable alcohols 14 (35\% yield) and 15 (38\% yield). At this stage, the cyclization of the substrate to tetrahydropyran was obtained. The configurations of $\mathbf{1 4}$ and $\mathbf{1 5}$ were not determined at this stage. After conversion of $\mathbf{1 5}$ to the corresponding mesylate by using $\mathrm{MeSO}_{2} \mathrm{Cl}$ and $\mathrm{Et}_{3} \mathrm{~N}$, the resulting crude mesylate was exposed to $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH , giving tetrahydropyran 17 in 56% yield.

The next key step involved formation of the cinnamyl compound by the coupling of aryl halide with olefin employing a Pd catalyst.

The Mizorogi-Heck reaction is known to couple an aryl halide with a conjugate olefin or enol using Pd catalysis. However, olefin 17 is not a conjugate olefin. This case is not typical of coupling reactions using Pd catalysts. Cesati et al. have reported Pd catalytic coupling reactions between aryl bromide and ethylene using PdCl_{2-} $\left(\mathrm{PPh}_{3}\right)_{2} .{ }^{9}$ The $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$-catalyzed coupling reaction between 1-bromo-3,4-dimethoxybenzene and olefin 17 was carried out in DMF at $90^{\circ} \mathrm{C}$, giving trans-olefin 18 in 33% yield. A 58% portion of olefin $\mathbf{1 7}$ was recovered. Only the trans-olefin showing a coupling constant of 16.1 Hz for $\mathrm{H}-7^{\prime \prime}$ and $\mathrm{H}-8^{\prime \prime}$ was obtained. The formation of cis-olefin was not observed. The coupling constant of H-7 of $\mathbf{1 8}$ (9.3 Hz , diaxial) became clear at this stage, showing the trans-configuration of the $\mathrm{C}-7-\mathrm{C}-8$ bond. To compare the coupling constant of $\mathrm{H}-7$, the 7,8 -cis-compound 16 was prepared from Grignard product $\mathbf{1 4}$ by mesylation and deacetylation followed by treatment with sodium hydride in DMF. The H-7 coupling constant of the 7,8-cis-compound 16 was 2.0 Hz (axial-equatorial). Finally, desilylation of $\mathbf{1 8}$ by treatment with TBAF gave (+)morinol B in quantitative yield. NMR data agreed with those in the literature. ${ }^{1,2}(-)$-Morinol B was also synthesized from $(R)-3$ by almost the same synthetic method. In the step for introduction of a chiral auxiliary before allylation, (R)-Evans' chiral auxiliary was employed. These facts mean that the relative configuration of the $\mathrm{C}-7^{\prime}-\mathrm{C}-8^{\prime}$ bond of naturally occurring morinol B is threo. The specific rotations of synthesized $(+)$ - and $(-)$-morinol B were +69 and -69 , respectively. On the other hand, specific rotation of isolated morinol B was reported as -3.92. . 1,2 This shows that morinol B was biosynthesized as an enantiomeric mixture. The enantiomeric excess of synthesized $(+)$ - and $(-)$-morinol B was established as more than 99% each by HPLC analysis using a chiral column.

Scheme 2. Synthesis of Morinol A^{a}

${ }^{a}$ (a) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{PivCl}, 0^{\circ} \mathrm{C} 1 \mathrm{~h}$, then lithium salt of (R)-4-benzyl-2-oxazolidinone, from -70 to $0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}\left(83 \%\right.$ yield); (b) KHMDS, allyl bromide, THF, from $-70{ }^{\circ} \mathrm{C}$ to rt, $16 \mathrm{~h}\left(59 \%\right.$ yield); (c) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}\left(90 \%\right.$ yield); (d) PCC, MS $4 \AA, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}\left(100 \%\right.$ yield); (e) $3,4-(\mathrm{MeO})_{2} \mathrm{PhMgBr}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}(23: 28 \%$ yield, 24: 26% yield); (f) (1) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{rt}, 16 \mathrm{~h}$; (2) $\mathrm{HCO}_{2} \mathrm{H}$, ether, $-5{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}\left(\mathbf{2 5}: 58 \%\right.$ yield, 26: 59% yield); (g) (1) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Ch}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (2) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}$; (3) NaH , DMF, rt, 16 h (95% yield); (h) (1) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; (2) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH, rt, 16 h (54% yield); (i) n - $\mathrm{Bu}{ }_{4} \mathrm{NF}$, THF, rt, $3 \mathrm{~h}(94 \% \text { yield); (j) 1-Br-3,4-(MeO) })_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}(31 \%$ yield, recovered 29, $67 \%)$.

To synthesize $7^{\prime}, 8^{\prime}$-threo-morinol A, carboxylic acid 8 was selected as a starting material (Scheme 2). After attachment of R-Evans' chiral auxiliary, the resulting compound 19 was converted to Grignard products 23 and 24. Compound 24 was transformed to allyl tetrahydropyran 29 to examine the olefin coupling reaction using an olefin without a silyl group. The coupling reaction of olefin 29 with 1-bromo-3,4-dimethoxybenzene using $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ gave (-)-morinol A (31\% yield) and recovered olefin 29 (67\%). NMR data agreed with those in the literature. ${ }^{1,2}(+)$-Morinol A was also synthesized by the same method. It was confirmed that the relative configuration of the $\mathrm{C}-7^{\prime}-\mathrm{C}-8^{\prime}$ bond of naturally occurring morinol A is also the threo form and morinol A is biosynthesized as an enantiomeric mixture. The specific rotations of synthesized (+)and (-)-morinol A were +15 and -15 , respectively. On the other hand, the specific rotation of isolated morinol B was reported as $+0.98 .{ }^{1,2}$ The HPLC analysis using a chiral column showed that the enantiomeric excess of synthesized $(+)$ - and $(-)$-morinol A was more than 99% ee.

To ensure the stereochemistry of morinols A and $\mathrm{B},(-)-7^{\prime}, 8^{\prime}-$ erythro-morinols A (31) and B (32) were synthesized from Evans' syn aldol product $\mathbf{3 0}$ (Scheme 3). The ${ }^{13} \mathrm{C}$ NMR spectrum of (+)$7^{\prime}, 8^{\prime}$-erythro-morinol B (32) was different from that of $(+)-7^{\prime}, 8^{\prime}-$ threo-morinol B (2); however, the ${ }^{13} \mathrm{C}$ NMR spectrum of (-)-7 $7^{\prime}, 8^{\prime}-$ erythro-morinol A (31) was similar to that of (-)- $7^{\prime}, 8^{\prime}$-threomorinol A (1). A clear difference between the $7^{\prime}, 8^{\prime}$-threo and $7^{\prime}, 8^{\prime}$ erythro isomers was observed in the chemical shifts of $\mathrm{H}_{2}-9, \mathrm{H}-7^{\prime \prime}$, and $\mathrm{H}-8^{\prime \prime}$. The $\mathrm{H}_{2}-9^{\prime}$ of the $7^{\prime}, 8^{\prime}$-threo isomers (morinol A: 3.42 and 4.38 ppm ; morinol B: 3.74 and 4.50 ppm) resonates at lower field than that of the $7^{\prime}, 8^{\prime}$-erythro isomers (morinol A: 3.28 and $3.84-3.89 \mathrm{ppm}$, morinol B: 3.64 and $3.86-3.92 \mathrm{ppm}$). Both H-7" and $\mathrm{H}-8^{\prime \prime}$ of the $7^{\prime}, 8^{\prime}$-threo isomers (morinol A: H-7', 6.09 ppm , $\mathrm{H}-8^{\prime \prime}, 5.71 \mathrm{ppm}$; morinol B: H-7", $6.08 \mathrm{ppm}, \mathrm{H}-8^{\prime \prime}, 5.69 \mathrm{ppm}$) resonate at higher field than those of the $7^{\prime}, 8^{\prime}$-erythro isomers
(morinol A: H-7", $6.17 \mathrm{ppm}, \mathrm{H}-8^{\prime \prime}, 5.85 \mathrm{ppm}$; morinol B: H-7", $\left.6.19 \mathrm{ppm}, \mathrm{H}-8^{\prime \prime}, 5.87 \mathrm{ppm}\right)$. The coupling constants of $\mathrm{H}-7^{\prime}$ of the $7^{\prime}, 8^{\prime}$-threo isomers (morinol A: 9.1 Hz; morinol B: 9.0 Hz) were larger than those of the $7^{\prime}, 8^{\prime}$-erythro isomers (morinol A: 7.3 Hz ; morinol B: 8.5 Hz).

The stereochemistry of naturally occurring tetrahydropyran sesquineolignans morinols A and B was determined as $7^{\prime}, 8^{\prime}$-threo by enantioselective syntheses of (+)- and (- -morinols A and B. The syntheses of the $7^{\prime}, 8^{\prime}$-erythro isomer permitted the comparison of chemical shifts. This research will contribute to biosynthetic and biological research on neolignans.

Experimental Section

General Experimental Procedures. Melting points were not corrected. Optical rotations were measured on a Horiba SEPA-200 instrument. NMR data were obtained using a JNM-EX400 spectrometer. EIMS data were measured with a JMS-MS700V spectrometer. The silica gel used was Wakogel C-300 (Wako, 200-300 mesh). HPLC analysis was performed with Shimadzu LC-6AD and SPD-6AV instruments. The numbering of compounds follows IUPAC nomenclatural rules.
(S)-4-Benzyl-3-(5-hexenoyl)-2-oxazolidinone (3). To a solution of 5-hexenoic acid ($8.43 \mathrm{~mL}, 0.071 \mathrm{~mol}$) in THF (200 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(9.90 \mathrm{~mL}, 0.071 \mathrm{~mol})$ and pivaloyl chloride $(8.74 \mathrm{~mL}, 0.071 \mathrm{~mol})$ at $-70^{\circ} \mathrm{C}$, and then the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to $-70{ }^{\circ} \mathrm{C}$, a solution of the lithium salt of (S)-4-benzyl-2oxazolidinone prepared from (S)-4-benzyl-2-oxazolidinone (12.5 g , 0.071 mol) and $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in THF, $44.4 \mathrm{~mL}, 0.071 \mathrm{~mol})$ at -70 ${ }^{\circ} \mathrm{C}$ in THF (150 mL) was added, and then the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the solution was separated, washed with brine, and dried ($\mathrm{Na}_{2}-$ SO_{4}). Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:3) gave acyloxazolidinone $\mathbf{3}(15.6 \mathrm{~g}, 0.057 \mathrm{~mol}, 80 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}+69\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$

Scheme 3. Syntheses of (-)-7', 8^{\prime}-erythro-Morinol A and (+)-7', 8^{\prime}-erythro-Morinol B^{a}

${ }^{\text {a }}$ (a) $3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CHO}, \mathrm{Bu}_{2} \mathrm{BOTf}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, from -65 to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}(100 \%$ yield).
1.77-1.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-3$ of hexenoyl), 2.13-2.19 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-2\right.$ of hexenoyl), $2.77\left(1 \mathrm{H}, \mathrm{dd}, J=13.5,9.5 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{a}} \mathrm{Ph}\right), 2.87-3.03(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}_{2}-4$ of hexenoyl), $3.29\left(1 \mathrm{H}, \mathrm{dd}, J=13.5,3.4 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{~b}} \mathrm{PH}\right), 4.14-$ $4.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 4.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.99-5.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right.$ of hexenoyl), $5.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.20-7.21(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.26-7.29$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.3$, $33.0,34.8,37.9,55.1,66.1,115.3,127.3,128.9,129.4,135.3,137.8$, 153.4, 173.1; anal. C 70.50%, H 7.02%, N 5.10%, calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}$, C 70.31%, H 7.01%, N 5.12%. (R)-3: $[\alpha]^{20}$ D -69 (c 1.9, $\left.\mathrm{CHCl}_{3}\right)$.
(S)-4-Benzyl-3-\{(R)-2-[(S)-(hydroxy)(3,4-dimethoxyphenyl)methyl]-5-hexenoyl\}-2-oxazolidinone (4). The reaction has previously been described. ${ }^{10}$ Yield 93%, colorless oil: $[\alpha]^{20} \mathrm{D}-10\left(c 2.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$ of hexenoyl), $1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ of hexenoyl), $2.02-2.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4\right.$ of hexenoyl), $2.57(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.13.7,9.8 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{a}} \mathrm{Ph}\right), 3.12(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{OH}), 3.16(1 \mathrm{H}, \mathrm{d}, J$ $\left.=13.7,3.4 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{~b}} \mathrm{Ph}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.09-4.16 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 4.48(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ of hexenoyl), $4.66(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-4), 4.78(1 \mathrm{H}, \mathrm{dd}, J=8.3,7.8 \mathrm{~Hz}, \mathrm{ArCHOH}), 4.91-4.98(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}_{2}-6$ of hexenoyl), $5.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of hexenoyl), $6.84(1 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.00(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.13-7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.25-7.32(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.9,31.5,37.5,48.6,55.5,55.8,55.9,65.8,76.2$, $109.3,110.9,115.2,118.7,127.3,128.9,129.4,134.9,135.2,137.7$, 148.7, 149.1, 153.7, 176.1; anal. C 68.13\%, H 6.54\%, N 2.99\%, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}, \mathrm{C} 68.32 \%$, H 6.65%, N 3.19%. (R)-3-\{(S)-2-[(R)]\}-4: $[\alpha]^{20}{ }_{\mathrm{D}}+10\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$.
(S)-4-Benzyl-3-\{(R)-2-[(S)-(3,4-dimethoxyphenyl)(triisopropyls-ilyloxy)methyl]-5-hexenoyl\}-2-oxazolidinone (5). The reaction has previously been described. ${ }^{10}$ Yield 91%, colorless oil: $[\alpha]^{20}{ }_{D}-45(c$ 3.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.86-1.00(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.24(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{a}$ of hexenoyl), $1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ of hexenoyl), $1.86-1.90$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-4\right.$ of hexenoyl), $2.62\left(1 \mathrm{H}, \mathrm{dd}, J=12.7,11.2, \mathrm{CH}_{2 \mathrm{a}} \mathrm{Ph}\right)$, $3.58\left(1 \mathrm{H}, \mathrm{dd}, J=12.7,3.2 \mathrm{~Hz}, \mathrm{C}_{2 \mathrm{~b}} \mathrm{Ph}-4\right)$, $3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08-4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 4.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ of hexenoyl), $4.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.84-4.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right.$ of hexenoyl $)$, $4.98(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \operatorname{ArCHOSi}), 5.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ of hexenoyl), $6.78(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.87(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, \mathrm{ArH})$, $7.10(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}), 7.22-7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.34-7.38$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.7,17.9,18.1,28.6,31.4,38.4$, $51.0,55.79,55.80,56.2,65.9,77.8,110.1,110.5,114.8,120.2,127.2$, 129.0, 129.3, 135.2, 136.0, 138.0, 148.8, 148.9, 153.3, 175.3; anal. C $68.44 \%, \mathrm{H} 8.58 \%$, N 2.16%, calcd for $\mathrm{C}_{34} \mathrm{H}_{49} \mathrm{O}_{6} \mathrm{NSi}, \mathrm{C} 68.54 \%$, H 8.29%, N 2.35%. (R)- $\{(S)-[(R)]\}-5:[\alpha]^{20}{ }_{\mathrm{D}}+45\left(c 3.6, \mathrm{CHCl}_{3}\right)$.
(S)-2-[(S)-(3,4-Dimethoxyphenyl)(triisopropylsilyloxy)methyl]-5-hexen-1-ol (6). The reaction has previously been described. ${ }^{10}$ Yield 60%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-48\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.97-1.03(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.40(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b})$,
$1.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}), 2.78(1 \mathrm{H}$, dd, $J=5.9,4.9 \mathrm{~Hz}, \mathrm{OH}), 3.57(1 \mathrm{H}, \mathrm{ddd}, J=11.2,5.9,5.9 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a})$, $3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 3.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.85(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}$, ArCHOSi $), 4.91-4.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right), 5.72(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 6.75-6.83$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.5,18.0,18.1$, $27.0,31.5,47.8,55.8,63.0,79.2,109.9,110.4,114.7,119.1,136.1$, 138.5, 148.3, 148.7; anal. C 67.75%, $\mathrm{H} 10.30 \%$, calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}$, C 68.20%, H 10.02%. (R)-[(R)]-6: $[\alpha]^{20}{ }_{\mathrm{D}}+48\left(c \quad 0.4, \mathrm{CHCl}_{3}\right)$.
(5S,6S)-6-(3,4-Dimethoxyphenyl)-6-(triisopropylsilyloxy)-5-trity-loxymethyl-1-hexene (7). A mixture of alcohol 6 ($15.2 \mathrm{~g}, 0.036 \mathrm{~mol}$) and trityl chloride $(10.0 \mathrm{~g}, 0.036 \mathrm{~mol})$, and DMAP $(0.1 \mathrm{~g}, 0.00082$ mol) in pyridine (50 mL) was stirred at $60^{\circ} \mathrm{C}$ for 16 h . After addition of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc, the organic solution was separated, washed with a saturated aqueous CuSO_{4} solution, a saturated aqueous NaHCO_{3} solution, and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography ($\mathrm{EtOAc} /$ hexane, 1:9) gave trityl ether $7(19.0 \mathrm{~g}, 0.029 \mathrm{~mol}, 81 \%)$ as colorless crystals, mp $113-114^{\circ} \mathrm{C}(i-$ $\left.\operatorname{Pr}_{2} \mathrm{O}\right):[\alpha]^{20}{ }_{\mathrm{D}}-47\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.69(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4 \mathrm{a}), 1.00-1.06(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}), 1.81-2.04(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{2}-3\right), 2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.66\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{a}}\right)$, $3.21\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,5.1 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.88-4.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-1\right), 5.30(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}$, ArCHOSi), $5.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 6.53(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $7.21-7.30(9 H, m, A r H), 7.40-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 12.4,18.06,18.13,24.4,31.8,46.4,55.7,63.8,73.8,86.7,109.8$, $110.4,114.4,119.3,126.9,127.7,128.7,134.5,139.0,144.3,147.6$, 148.0; anal. C 77.49%, H 8.85%, calcd for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}, \mathrm{C} 77.67 \%$, H 8.49%. $(5 R, 6 R)-7:[\alpha]^{20}{ }_{\mathrm{D}}+47\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
(4S,5S)-5-(3,4-Dimethoxyphenyl)-5-(triisopropylsilyloxy)-4-(trityloxymethyl)pentanoic Acid (8). A solution of olefin 7 (19.0 g, 0.029 $\mathrm{mol})$ and 4-methylmorpholine N-oxide ($3.95 \mathrm{~g}, 0.034 \mathrm{~mol}$) in acetone $(250 \mathrm{~mL}), t-\mathrm{BuOH}(50 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was stirred at room temperature for 16 h under N_{2} gas. After addition of a saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, the mixture was concentrated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude glycol. A mixture of the crude glycol and $\mathrm{NaIO}_{4}(7.22 \mathrm{~g}, 0.034 \mathrm{~mol}$) in $\mathrm{MeOH}(150 \mathrm{~mL})$ was stirred at room temperature for 3 h . After concentration, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and EtOAc . The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude aldehyde. To a solution of the crude aldehyde, 2-methyl-2-butene ($13.1 \mathrm{~mL}, 0.12 \mathrm{~mol}$), and $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(4.37 \mathrm{~g}, 0.028 \mathrm{~mol})$ in $t-\mathrm{BuOH}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added $\mathrm{NaClO}_{2}(80 \%, 11.0 \mathrm{~g}, 0.097 \mathrm{~mol})$. The solution was stirred at room temperature for 1 h , and then CHCl_{3} was added. After acidification with 1 M aqueous HCl solution, the organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica
gel column chromatography (EtOAc/hexane, 1:2) gave carboxylic acid $8(16.8 \mathrm{~g}, 0.025 \mathrm{~mol}, 86 \%)$ as a colorless oil: $[\alpha]^{20} \mathrm{D}-37\left(c 0.3, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.97-1.10(22 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}, \mathrm{H}-3 \mathrm{a}), 1.86(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3 \mathrm{~b}), 2.20-2.34\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-2, \mathrm{H}-4\right), 2.81(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}$, $\mathrm{H}-5 \mathrm{a}), 3.12(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.6 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.23(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{ArCHOSi}), 6.56(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.20-7.30(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.3,18.0,18.1,21.3,32.4,46.6,55.7,64.0,74.2$, 86.9, 110.0, 110.2, 119.3, 127.0, 127.7, 128.7, 134.1, 144.1, 147.8, 148.2, 179.6; anal. C, 73.46%, H 8.08%, calcd for $\mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}, \mathrm{C}$ 73.86%, H 7.97%. $(4 R, 5 R)-\mathbf{8}:[\alpha]^{20}{ }_{\mathrm{D}}+37\left(c 1.2, \mathrm{CHCl}_{3}\right)$.
(S)-4-Benzyl-3-[(4S,5S)-5-(3,4-dimethoxyphenyl)-5-(triisopropyl-silyloxy)-4-(trityloxymethyl)pentanoyl]-2-oxazolidinone (9). To a solution of carboxylic acid $8(16.8 \mathrm{~g}, 0.025 \mathrm{~mol})$ in THF (100 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(3.44 \mathrm{~mL}, 0.025 \mathrm{~mol})$ and $\mathrm{PivCl}(3.08 \mathrm{~mL}, 0.025 \mathrm{~mol})$ at $-70^{\circ} \mathrm{C}$, and then the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to $-70^{\circ} \mathrm{C}$, a solution of the lithium salt of (S)-4-benzyl-2oxazolidinone in THF (60 mL), prepared from (S)-4-benzyl-2-oxazolidinone ($4.33 \mathrm{~g}, 0.024 \mathrm{~mol}$) and $n-\mathrm{BuLi}(2.6 \mathrm{M}$ in THF, 9.65 mL , 0.025 mol), at $-70^{\circ} \mathrm{C}$ in THF was added, and then the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . After addition of a saturated aqueous $\mathrm{NH}_{4}-$ Cl solution, the solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:3) gave acyloxazolidinone 9 ($18.6 \mathrm{~g}, 0.022 \mathrm{~mol}, 88 \%$) as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-10\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.97-1.08(21 \mathrm{H}, \mathrm{m}, i-\operatorname{Pr}), 1.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$ of pentanoyl), $1.89(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ of pentanoyl), $2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of pentanoyl), $2.58(1 \mathrm{H}, \mathrm{dd}$, $\left.J=13.4,10.0 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{a}} \mathrm{Ph}-4\right), 2.81-2.98\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-2\right.$ of pentanoyl, $\left.\mathrm{TrOCH}_{2 \mathrm{a}}\right), 3.16\left(1 \mathrm{H}, \mathrm{dd}, J=9.8,5.4 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=13.4,3.2 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{~b}} \mathrm{Ph}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.08-4.10 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5$), $4.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 5.20(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}$, ArCHOSi), $6.59(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.15-7.17(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.20-7.30(12 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43-7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.4,18.0,18.1,20.9,34.1,37.8,46.9,55.1,55.69,55.73$, $64.3,66.0,74.5,86.9,110.0,110.3,119.3,126.9,127.2,127.7,128.7$, $128.9,129.3,134.4,135.4,144.1,147.7,148.2,153.2,173.2$; anal. C 74.14%, $\mathrm{H} 7.63 \%$, N 1.54%, calcd for $\mathrm{C}_{52} \mathrm{H}_{63} \mathrm{O}_{7} \mathrm{NSi}, \mathrm{C} 74.16 \%, \mathrm{H}$ 7.54%, $\mathrm{N} 1.66 \% .(R)-[(4 R, 5 R)]-9:[\alpha]^{20}{ }_{\mathrm{D}}+10\left(c 1.1, \mathrm{CHCl}_{3}\right)$.
(R)-4-Benzyl-3-[(4S,5S)-5-(3,4-dimethoxyphenyl)-5-(triisopropyl-silyloxy)-4- (trityloxymethyl)pentanoyl]-2-oxazolidinone (19). Yield 83%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-42\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.98-1.08(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$ of pentanoyl), $1.89(1 \mathrm{H}$, m, H-3b of pentanoyl), $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of pentanoyl), $2.70(1 \mathrm{H}, \mathrm{dd}$, $\left.J=13.6,9.6 \mathrm{~Hz}, \mathrm{PhCH}_{2 \mathrm{a}}\right), 2.84-2.98(1 \mathrm{H}$, overlapped, $\operatorname{TrOCH} 2 \mathrm{a})$, $2.91\left(2 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}, \mathrm{H}_{2}-2\right.$ of pentanoyl), $3.17(1 \mathrm{H}, \mathrm{dd}, J=9.6,5.7$ $\left.\mathrm{Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.23\left(1 \mathrm{H}, \mathrm{dd}, J=13.6,3.2 \mathrm{~Hz}, \mathrm{PhCH}_{2 \mathrm{~b}}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 4.54(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4), 5.19(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{ArCHOSi}), 6.59(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.88$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.15-7.17(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-7.32(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.43-$ $7.45(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.3,18.0,18.1,20.9,34.1$, $37.8,46.7,55.1,55.66,55.71,64.4,65.9,74.4,74.5,86.9,110.0,110.2$, $119.3,126.9,127.2,127.7,128.7,128.9,129.3,134.4,135.3,144.1$, 147.7, 148.2, 153.1, 173.1; anal. C 74.43%, H 7.15%, N 1.60%, calcd for $\mathrm{C}_{52} \mathrm{H}_{63} \mathrm{O}_{7} \mathrm{NSi}$, C 74.16%, H 7.54%, N 1.66%. (S)-[($\left.\left.4 R, 5 R\right)\right]-19$: $[\alpha]^{20}{ }_{\mathrm{D}}+42\left(c \quad 0.7, \mathrm{CHCl}_{3}\right)$.
(S)-4-Benzyl-3-\{(S)-2-[(2S,3S)-3-(3,4-dimethoxypheyl)-3-(triiso-propylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-pentenoyl\}-2-oxazolidinone (10). To a solution of KDMDS ($26.7 \mathrm{~mL}, 0.5 \mathrm{M}$ toluene, 0.013 $\mathrm{mol})$ in THF (80 mL) was added a solution of acyloxazolidinone 9 $(18.6 \mathrm{~g}, 0.022 \mathrm{~mol})$ in THF $(50 \mathrm{~mL})$ and allyl bromide $(2.83 \mathrm{~mL}, 0.033$ mol) at $-70{ }^{\circ} \mathrm{C}$. The solution was gradually warmed to room temperature for 16 h . After addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:6) gave allyl compound 10 (9.47 g, 0.011 mol, 50%) as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-25\left(c \quad 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90-1.11(22 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}, \mathrm{CHH}-2$ of pentenoyl), $2.08(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH} H-2$ of pentenoyl), $2.19(1 \mathrm{H}, \mathrm{m}, H \mathrm{H}-3$ pentenoyl), 2.26-2.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{HH}-3$ pentenoyl, $\mathrm{TrOCH}_{2} \mathrm{CH}$), $2.56(1 \mathrm{H}, \mathrm{dd}, J=13.2,10.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{2 \mathrm{a}} \mathrm{Ph}\right), 2.79\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{a}}\right), 3.12(1 \mathrm{H}, \mathrm{dd}$, $\left.J=9.3,5.6 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.29\left(1 \mathrm{H}, \mathrm{dd}, J=13.2,2.9 \mathrm{~Hz}, \mathrm{CH}_{2 \mathrm{~b}} \mathrm{Ph}\right)$, $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82-3.89(1 \mathrm{H}$, overlapped, $\mathrm{H}-2$ of pentenoyl), $3.95(1 \mathrm{H}, \mathrm{dd}, J=9.3,8.5 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 4.05(1 \mathrm{H}, \mathrm{dd}$, $J=9.3,2.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.93-4.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right.$ of pentenoyl), $5.27(1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of
pentenoyl), $6.56(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.18-7.36(14 \mathrm{H}, \mathrm{m}$, ArH), 7.40-7.44 (6H, m, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.4,18.0,18.1$, $28.5,38.0,38.2,39.9,45.2,55.5,55.7,64.3,65.7,74.2,86.9,110.0$, $110.4,117.1,119.3,126.9,127.2,127.7,128.7,128.9,129.3,134.4$, 134.9, 135.7, 144.1, 147.6, 148.1, 152.7, 175.5; anal. С 75.12%, H 7.68%, $\mathrm{N} 1.65 \%$, calcd for $\mathrm{C}_{55} \mathrm{H}_{67} \mathrm{O}_{7} \mathrm{NSi}, \mathrm{C} 74.88 \%$, H 7.66%, N 1.59%. $(R)-3-\{(R)-[(2 R, 3 R)]\}-10:[\alpha]^{20}{ }_{\mathrm{D}}+25\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$.
(R)-4-Benzyl-3-\{(R)-2-[(2S,3S)-3-(3,4-dimethoxypheyl)-3-(triiso-propylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-pentenoyl\}-2-oxazolidinone (20). Yield 59\%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-34\left(c \quad 2.7, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88-1.15(22 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}, \mathrm{CH}-2 \mathrm{a}$ of pentenoyl), $1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{~b}$ of pentenoyl), $2.24(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$ of pentenoyl), $2.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ of pentenoyl), $2.55(1 \mathrm{H}$, dd, $\left.J=13.3,10.1 \mathrm{~Hz}, \mathrm{PhCH}_{2 \mathrm{a}}\right), 2.66(1 \mathrm{H}, \mathrm{dd}, J=10.0,10.0 \mathrm{~Hz}$, $\mathrm{TrOCH}_{2 \mathrm{a}}$), $3.20\left(1 \mathrm{H}, \mathrm{dd}, J=13.3,3.1 \mathrm{~Hz}, \mathrm{PhCH}_{2 \mathrm{~b}}\right), 3.25(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.10.0,4.9 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2$ of pentenoyl), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80-3.86(1 \mathrm{H}$, overlapped, $\mathrm{H}-5 \mathrm{a})$, $4.01(1 \mathrm{H}, \mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.41(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 4.99-5.04$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5$ of pentenoyl), $5.39(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.75$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ of pentenoyl), $6.53-6.58(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.87(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $7.16-7.18(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-7.33(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.45$ (6 H , $\mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.3,18.0,18.1,26.8,36.9,38.0,41.0$, $45.7,55.5,55.6,55.7,64.3,65.6,73.5,87.0,110.0,110.4,117.1,119.3$, $126.9,127.2,127.7,128.6,128.9,129.3,133.9,135.2,135.5,144.1$, 147.6, 148.0, 152.6, 175.8; anal. C 75.01%, H 7.70%, N 1.59%, calcd for $\mathrm{C}_{55} \mathrm{H}_{67} \mathrm{O}_{7} \mathrm{NSi}, \mathrm{C} 74.88 \%$, H 7.66%, N 1.59%. (S)-3-\{(S)-2-[(2R,3R)]20: $[\alpha]^{20} \mathrm{D}+33\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$.
(S)-2-[(2S,3S)-3-(3,4-Dimethoxyphenyl)-3-(triisopropylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-penten-1-ol (11). To a solution of $\mathrm{LiBH}_{4}(1.75 \mathrm{~g}, 0.080 \mathrm{~mol})$ and $\mathrm{MeOH}(1.75 \mathrm{~mL})$ in THF $(20 \mathrm{~mL})$ was added acyloxazolidinone $10(9.47 \mathrm{~g}, 0.011 \mathrm{~mol})$ in THF (50 mL), and then the reaction solution was stirred at room temperature for 1 h . After addition of a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the mixture was concentrated. The residue was dissolved in EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/ hexane, 1:3) gave alcohol $11(6.97 \mathrm{~g}, 0.0098 \mathrm{~mol}, 89 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-43\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.53(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ 2a), $0.88-1.13(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.41(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{~b}), 1.49(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-2), 1.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b})$, $2.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{a}}\right)$, $3.13\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,5.1 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.49(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-1\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.91-4.97(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{2}-5\right), 5.30(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 6.60$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 6.87 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 7.23-7.32 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.44-7.46 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.4,18.0,18.1,26.9,36.9,38.2$, $44.6,55.7,64.7,74.3,87.0,109.9,110.4,116.1,119.4,127.0,127.7$, 128.7, 134.1, 136.9, 144.2, 147.7, 148.1; anal. С 76.31%, H 8.57%, calcd for $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}, \mathrm{C} 76.23 \%, \mathrm{H} 8.53 \%$. $(R)-[(2 R, 3 R)]-11:[\alpha]^{20}{ }_{\mathrm{D}}$ +43 ($c 1.0, \mathrm{CHCl}_{3}$).
(R)-2-[(2S,3S)-3-(3,4-Dimethoxyphenyl)-3-(triisopropylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-penten-1-ol (21). Yield 90\%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-24\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ 2a), $0.99-1.12(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.36-1.45(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{~b}, \mathrm{H}-2), 1.60$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 2.36(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{a}}\right), 3.16(1 \mathrm{H}, \mathrm{dd}$, $\left.J=9.5,5.3 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.34(1 \mathrm{H}, \mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a})$, $3.43(1 \mathrm{H}, \mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.96-4.99\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 5.29(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}$, ArCHOSi), $5.72(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 6.55-6.58(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.84(1 \mathrm{H}, \mathrm{s}$, ArH), 7.21-7.31 (9H, m, ArH), 7.43-7.46 (6H, m, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.4,18.0,18.1,26.5,35.4,38.3,44.1,55.67,55.70,64.7$, $65.8,74.2,87.0,109.9,110.5,116.1,119.5,127.0,127.7,128.7,134.2$, 137.0, 144.1, 147.7, 148.1; anal. C 76.09%, H 8.55\%, calcd for $\mathrm{C}_{45} \mathrm{H}_{60} \mathrm{O}_{5} \mathrm{Si}, \mathrm{C} 76.23 \%$, H 8.53\%. (S)-2-[(2R,3R)]-21: $[\alpha]^{20}{ }_{\mathrm{D}}+24(c$ $0.5, \mathrm{CHCl}_{3}$).
(S)-2-[(2S,3S)-3-(3,4-Dimethoxyphenyl)-3-(triisopropylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-pentenal (12). A mixture of alcohol $11(6.97 \mathrm{~g}, 0.0098 \mathrm{~mol})$, PCC ($2.66 \mathrm{~g}, 0.012 \mathrm{~mol}$), and molecular sieves $4 \AA(0.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was stirred at room temperature for 16 h before addition of dry $\mathrm{Et}_{2} \mathrm{O}$. After filtration, the filtrate was concentrated. The residue was applied to silica gel column chromatography (EtOAc/hexane, 1:5) to give aldehyde $12(5.21 \mathrm{~g}, 0.0074 \mathrm{~mol}$, $76 \%)$ as colorless crystals, $\mathrm{mp} 98-9{ }^{\circ} \mathrm{C}\left(i-\mathrm{Pr}_{2} \mathrm{O}\right):[\alpha]^{20}{ }_{\mathrm{D}}-29(c 1.2$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.79(1 \mathrm{H}, \mathrm{m} \mathrm{CH}-2 \mathrm{a}), 0.92-1.10(21 \mathrm{H}$,
m, i-Pr), $1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{~b}), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.22-2.31$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{H}_{2}-3\right), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{a}}\right), 3.11$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.4 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.93-4.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 5.23(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{ArCHOSi})$, $5.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 6.57(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.21-7.32$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.40-7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.46(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}$, CHO); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.3,12.5,17.9,18.0,18.1,25.6,34.1$, 44.7, 49.1, 55.7, 55.8, 64.1, 74.3, 87.0, 110.0, 110.2, 117.1, 119.3, 127.0, 127.2, 127.7, 127.9, 128.6, 133.9, 134.7, 144.0, 146.9, 147.8, 148.2, 204.5; anal. C 76.46%, H 8.29%, calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}, \mathrm{C} 76.44 \%$, H 8.27%. (R)-[(2R,3R)]-12: $[\alpha]^{20}{ }_{\mathrm{D}}+28\left(c \quad 0.7, \mathrm{CHCl}_{3}\right)$.
(R)-2-[(2S,3S)-3-(3,4-Dimethoxyphenyl)-3-(triisopropylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-pentenal (22). Yield 100\%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-30\left(c \quad 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88-1.56(22 \mathrm{H}$, $\left.\mathrm{m}, i-\mathrm{Pr}, \mathrm{CH}_{2 \mathrm{a}}-3\right), 1.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \mathrm{~b}}-3\right), 2.17(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 2.26(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 2.31-2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2, \mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.83(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.9.4,9.4 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{a}}\right), 3.11\left(1 \mathrm{H}, \mathrm{dd}, J=9.7,5.5 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.71$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.99-5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-5\right), 5.28$ $(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 6.58(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.21-7.32(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $9.47(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{CHO}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.3,17.95$, $18.04,24.7,33.1,44.6,49.3,55.6,64.1,74.1,86.9,110.0,110.2,117.0$, $119.3,126.9,127.1,127.7,127.79,127.80,128.5,133.8,134.8,143.9$, 146.8, 147.7, 148.1, 204.4; anal. С 76.64%, H 8.01%, calcd for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{5} \mathrm{Si}, \mathrm{C} 76.44 \%$, H 8.27\%. (S)-2-[(2R,3R)]-22: $[\alpha]^{20}{ }_{\mathrm{D}}+31(c$ $\left.0.8, \mathrm{CHCl}_{3}\right)$.
(1R,2S,4S)-2-Allyl-5-hydroxy-1-(3,4-dimethoxyphenyl)-4-[(S)-(3,4dimethoxyphenyl)(triisopropylsilyloxy)methyl]pentyl Acetate (14) and (1S,2S,4S)-2-Allyl-5-hydroxy-1-(3,4-dimethoxyphenyl)-4-[(S)-(3,4-dimethoxyphenyl)(triisopropylsilyloxy)methyl]pentyl Acetate (15). A mixture of $\mathrm{Mg}(6.08 \mathrm{~g}, 0.25 \mathrm{~mol})$ and 1-bromo-3,4-dimethoxybenzene ($5.07 \mathrm{~mL}, 35.3 \mathrm{mmol}$) in THF $(150 \mathrm{~mL})$ was heated under reflux for 1 h before aldehyde $12(1.98 \mathrm{~g}, 2.80 \mathrm{mmol})$ in THF (50 mL) was added at $0{ }^{\circ} \mathrm{C}$. After stirring at room temperature for 1 h , a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography ($10 \% \mathrm{EtOAc} /$ toluene and $\mathrm{EtOAc} /$ hexane, $1: 1$) gave Grignard product $13(2.21 \mathrm{~g}, 2.61 \mathrm{mmol}, 93 \%)$ as a diastereomeric mixture (found C, $75.38 ; \mathrm{H}, 8.19 ; \mathrm{C}_{53} \mathrm{H}_{68} \mathrm{O}_{7}$ Si requires C , 75.32; H , 8.11). A solution of Grignard product ($2.21 \mathrm{~g}, 2.61 \mathrm{mmol}$) in pyridine $(7 \mathrm{~mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(7 \mathrm{~mL})$ was stirred at room temperature for 16 h , and then ice was added. After 6 h , the mixture was dissolved in CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic solution was separated, washed with 1 M aqueous HCl solution, saturated aqueous NaHCO_{3} solution, and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude acetate. To a solution of the crude acetate in ether (24 mL) was added $\mathrm{HCO}_{2} \mathrm{H}(36 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$. After stirring at $-5^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ were added. The organic solution was separated, washed with a saturated aqueous NaHCO_{3} solution and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:1) gave acetate $14(0.64 \mathrm{~g}, 0.99 \mathrm{mmol}, 35 \%)$ as a colorless oil and acetate $15(0.68 \mathrm{~g}, 1.05 \mathrm{mmol}, 38 \%)$ as a colorless oil. 14: $[\alpha]^{20}{ }_{\mathrm{D}}-2(c 1.6$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95-1.00(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.11(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2 \mathrm{a}} \mathrm{CHCH}_{2} \mathrm{OH}\right), 1.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2 \mathrm{~b}} \mathrm{CHCH}_{2} \mathrm{OH}\right), 1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ $(\mathrm{AcO}) \mathrm{CHCH}), 1.90\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{a}}\right), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.01$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{~b}}\right), 2.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2} \mathrm{CH}\right), 2.85(1 \mathrm{H}$, br s, $\mathrm{OH}), 3.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2 \mathrm{a}}\right), 3.84-3.92\left(1 \mathrm{H}\right.$, overlapped, $\left.\mathrm{HOCH}_{2 \mathrm{~b}}\right)$, $3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.64(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{ArCHOAc}), 4.97-5.02(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.64(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right.$ $\mathrm{CH}), 6.68-6.70(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.76-6.78(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.82(1 \mathrm{H}, \mathrm{d}$, $J 2.0 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.5,17.9,18.0,20.8,28.4,34.2$, $41.0,45.9,55.68,55.74,55.8,62.9,76.3,80.2,109.7,110.3,110.8$, $116.7,118.7,119.1,132.0,136.0,136.4,148.2,148.3,148.6,148.7$, 169.8; anal. C 67.01%, H 8.66%, calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Si}$, C 67.05%, H 8.75%. $(1 S, 2 R, 4 R)-4-[(R)]-14:[\alpha]^{20}{ }_{\mathrm{D}}+2\left(c 0.6, \mathrm{CHCl}_{3}\right) .15:[\alpha]_{\mathrm{D}}{ }^{20}$ $-52\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.96-1.01(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr})$, 1.30-1.39 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}\right), 1.79(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}(\mathrm{AcO}) \mathrm{CHCH})$, $1.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{HOCH}_{2} \mathrm{CH}\right), 1.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{a}}\right), 2.01(3 \mathrm{H}, \mathrm{s}$, Ac), $2.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{~b}}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, J=11.0,6.1 \mathrm{~Hz}$, $\left.\mathrm{HOCH}_{2 \mathrm{a}}\right), 3.78-3.89\left(1 \mathrm{H}\right.$, overlapped, $\left.\mathrm{HOCH}_{2 \mathrm{~b}}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.75$ $(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{ArCHOAc}), 4.93-5.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.56$ $(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.55(1 \mathrm{H}, \mathrm{dd}$, $J=8.3,2.0 \mathrm{~Hz}, \mathrm{ArH}), 6.68-6.73(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.3$
$\mathrm{Hz}, \mathrm{ArH}), 6.91(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.6$, 18.0, 18.1, 21.2, 28.0, 34.9, 40.9, 46.4, 55.79, 55.82, 55.86, 63.6, 77.6, $79.5,110.0,110.4,110.6,117.2,119.3,119.5,131.5,135.8,136.0$, 148.3, 148.5, 148.7, 170.0; anal. C 67.01%, H 8.74%, calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Si}, \mathrm{C} 67.05 \%$, $\mathrm{H} 8.75 \%$. $(1 R, 2 R, 4 R)-4-[(R)]-15,[\alpha]^{20}{ }_{\mathrm{D}}+52$ (c $0.7, \mathrm{CHCl}_{3}$).
(1S,2R)-1-(3,4-Dimethoxyphenyl)-2-[(2S,3S)-3-(3,4-dimethoxyphe-nyl)-3-(triisopropylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-penten-1-ol (23) and (1R,2R)-1-(3,4-Dimethoxyphenyl)-2-[(2S,3S)-3-(3,4-dimethoxyphenyl)-3-(triisopropylsilyloxy)-2-(trityloxymethyl)prop-1-yl]-4-penten-1-ol (24). To a solution of 3,4-dimethoxyphenylmagnesium bromide ($18 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 9.00 mmol) in THF (20 mL) was added aldehyde $22(2.96 \mathrm{~g}, 4.19 \mathrm{mmol})$ in THF $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After the reaction solution was stirred at room temperature for 1 h , a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography ($10 \% \mathrm{EtOAc}$ in toluene) gave 23 (0.98 g , $1.16 \mathrm{mmol}, 28 \%)$ as a colorless oil and $24(0.92 \mathrm{~g}, 1.09 \mathrm{mmol}, 26 \%)$ as a colorless oil. 23: $[\alpha]^{20} \mathrm{D}-26\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.48(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{a}), 0.96-1.05(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{~b})$, $1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.89(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 2.20(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 2.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.67(1 \mathrm{H}, \mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}$, $\mathrm{TrOCH}_{2 \mathrm{a}}$), $3.01\left(1 \mathrm{H}, \mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, \mathrm{TrOCH}_{2 \mathrm{~b}}\right), 3.66(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.42(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{ArCHOH}), 5.04-5.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right)$, $5.17(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.43-$ $6.53(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.57-6.65(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.69(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$, $\mathrm{ArH}), 6.76(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}), 7.20-7.30(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.39-$ 7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 12.4, 18.0, 18.1, 26.1, 33.8, $42.9,44.9,55.66,55.71,55.74,64.4,74.4,75.7,87.0,100.6,105.7$, $109.4,109.8,110.3,110.6,116.2,118.6,119.3,126.9,127.7,128.6$, 134.4, 135.5, 137.3, 144.1, 147.6, 148.0, 148.5; anal. С 75.08%, H 8.08%, calcd for $\mathrm{C}_{53} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}, \mathrm{C} 75.32 \%, \mathrm{H} 8.11 \%$. (1R,2S)-2-[(2R,3R)]23: $[\alpha]^{20}{ }_{\mathrm{D}}+26\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) .24:[\alpha]^{20}{ }_{\mathrm{D}}-12\left(c \quad 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.67(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{a}), 0.96-1.13(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.51-$ $1.60(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{~b}, \mathrm{H}-2), 1.90-2.14(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}, \mathrm{H}-3 \mathrm{a}), 2.12(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 2.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{TrOCH}_{2} \mathrm{CH}\right), 2.47(1 \mathrm{H}, \mathrm{dd}, J=9.6,4.4 \mathrm{~Hz}$, $\left.\mathrm{TrOCH}_{2 \mathrm{a}}\right), 2.88(1 \mathrm{H}, \mathrm{d}, J=9.6,4.4 \mathrm{~Hz}, \mathrm{TrOCH} 2 \mathrm{~b}), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.51$ $(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{ArCHOH}), 4.93-5.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.26$ $(1 \mathrm{H}, \mathrm{d}, J=3.7 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.44-6.52$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.57(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.62(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}$, $\mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.21-7.29(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35-7.37(6 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.4,18.0,18.1,24.2,35.2,43.6,44.8$, $55.6,55.7,64.2,74.1,75.4,86.8,109.3,109.8,110.5,116.2,118.4$, $119.4,126.9,127.6,128.7,134.1,136.0,137.2,144.1,147.6,147.8$, 147.9, 148.6; anal. C 75.21%, H 8.09%, calcd for $\mathrm{C}_{53} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}, \mathrm{C}$ $75.32 \%, \mathrm{H} 8.11 \%$. $(1 S, 2 S)-2-[(2 R, 3 R)]-24:[\alpha]^{20}{ }_{\mathrm{D}}+12\left(c 0.3, \mathrm{CHCl}_{3}\right)$.
(1S,2R,4S)-2-Allyl-5-hydroxy-1-(3,4-dimethoxyphenyl)-4-[(S)-(3,4dimethoxyphenyl)(triisopropylsilyloxy)methyl]pentyl Acetate (25). A solution of Grignard product $23(0.86 \mathrm{~g}, 1.02 \mathrm{mmol})$ in pyridine (5 $\mathrm{mL})$ and $\mathrm{Ac}_{2} \mathrm{O}(5 \mathrm{~mL})$ was stirred at room temperature for 16 h , and then ice was added. After 6 h , the mixture was dissolved in CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, washed with 1 M aqueous HCl solution, a saturated aqueous NaHCO_{3} solution, and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude acetate. To a solution of the crude acetate in ether $(10 \mathrm{~mL})$ was added $\mathrm{HCO}_{2} \mathrm{H}(15 \mathrm{~mL})$ at $-5^{\circ} \mathrm{C}$. After stirring at $-5^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ were added. The organic solution was separated, washed with a saturated aqueous NaHCO_{3} solution and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:1) gave alcohol $25(0.38 \mathrm{~g}, 0.59 \mathrm{mmol}, 58 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}$ $+4\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.91-0.93(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr})$, $1.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.98-$ $2.07\left(1 \mathrm{H}\right.$, overlapped, $\left.\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2 \mathrm{a}}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.19(1 \mathrm{H}$, m, H-4), $2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2 \mathrm{~b}}\right), 2.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.45$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{a}), 3.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}), 3.858\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.864(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J=$ $5.9 \mathrm{~Hz}, \mathrm{H}-1), 4.87-4.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.51(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, ArCHOSi), $5.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.73-6.86(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; anal. C 66.92%, H 8.63%, calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Si}, \mathrm{C} 67.05 \%$, H 8.75%.
(1R,2R,4S)-2-Allyl-5-hydroxy-1-(3,4-dimethoxyphenyl)-4-[(S)-(3,4-dimethoxyphenyl)(triisopropylsilyloxy)methyl]pentyl Acetate (26). Yield 59%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}+15\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92-1.02(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.24(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 \mathrm{a}), 1.46(1 \mathrm{H}$,
$\mathrm{m}, \mathrm{CH}-2 \mathrm{~b}), 1.77(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.82-2.00\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, $2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.86(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=6.1,6.1 \mathrm{~Hz}, \mathrm{OH}), 3.53(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5 \mathrm{a}), 3.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \mathrm{~b}), 3.86\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.76-4.80 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 4.91(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}, \mathrm{ArCHOAc})$, $5.52\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.56(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{ArCHOSi}), 6.77-$ $6.84(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 12.5,17.9$, 18.0, 21.2, 27.5, 34.1, 40.6, 46.2, 55.79, 55.84, 55.88, 62.9, 77.8, 80.0, $109.9,110.1,110.4,110.8,117.1,119.3,119.5,131.8,134.9,135.9$, $148.4,148.6,148.7,148.8,170.2$; anal. C $66.85 \%, \mathrm{H}, 8.45 \%$, calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Si}, \mathrm{C} 67.05 \%$, $\mathrm{H} 8.75 \%$. $(1 S, 2 S, 4 R)-4-[(R)]-\mathbf{2 6}:[\alpha]^{20}{ }_{\mathrm{D}}-15$ (c $0.4, \mathrm{CHCl}_{3}$).
(2R,3S,5S)-3-Allyl-2-(3,4-dimethoxyphenyl)-5-[(S)-(3,4-dimethoxyphenyl)(triisopropylsilyloxy)methyl]tetrahydropyran (16). To an ice-cooled solution of alcohol $14(0.35 \mathrm{~g}, 0.54 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(84$ $\mu \mathrm{L}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{MsCl}(46 \mu \mathrm{~L}, 0.59 \mathrm{mmol})$, and then the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, the organic solution was separated, washed with saturated aqueous NaHCO_{3} and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude mesylate. A mixture of the crude mesylate and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.32 \mathrm{~g}, 2.32 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred at room temperature for 6 h , and then $\mathrm{H}_{2} \mathrm{O}$ and EtOAc were added. The organic phase was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude hydroxy mesylate. To a suspension of $\mathrm{NaH}(0.10$ $\mathrm{g}, 60 \%$ oil suspension, 2.50 mmol) in DMF (5 mL) was added a solution of the crude hydroxy mesylate in DMF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for $16 \mathrm{~h}, \mathrm{EtOAc}$ and $\mathrm{H}_{2} \mathrm{O}$ were added. The organic phase was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:4) gave tetrahydropyran $16(0.22 \mathrm{~g}, 0.38 \mathrm{mmol}, 70 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}+6\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}$ (H-9a)), 0.94-1.01 ($21 \mathrm{H}, \mathrm{m}, i$-Pr), $1.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}(\mathrm{H}-9 \mathrm{~b})), 1.74$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3(\mathrm{H}-8)), 1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{a}}\right), 2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right.$ $\left.\mathrm{CHCH}_{2 \mathrm{~b}}\right), 2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5\left(\mathrm{H}-8^{\prime}\right)\right), 3.42(1 \mathrm{H}, \mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}$, H-6a (H-9'a)), $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.877(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.882\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.42(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{ArCHOSi})$, $4.45(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-2(\mathrm{H}-7)), 4.51(1 \mathrm{H}, \mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}$, H-6b (H-9'b)), 4.74-4.82 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right)$, $6.72(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, \mathrm{ArH}), 6.74-6.84(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.87$ $(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{ArH})$; anal. C $69.79 \%, \mathrm{H} 8.98 \%$, calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{6}$ Si, C 69.82%, H 8.96%.
(2S,3R,5S)-3-Allyl-2-(3,4-dimethoxyphenyl)-5-[(S)-(3,4-dimethoxyphenyl)(triisopropylsilyloxy)methyl]tetrahydropyran (27). Yield 95%, colorless oil: $[\alpha]^{2{ }_{D}}{ }_{\mathrm{D}}+54\left(c 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 0.94-1.01 ($21 \mathrm{H}, \mathrm{m}, i-\operatorname{Pr}), 1.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 1.68(1 \mathrm{H}, \mathrm{m}$, H-4b (H-9b)), 1.84-1.95 (2H, m, H-3 (H-8), H-5 (H-8')), 1.95-2.11 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right), 3.79-3.83(1 \mathrm{H}$, overlapped, $\mathrm{H}-6 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.868\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.872\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J=11.2,7.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\left(\mathrm{H}-9^{\prime} \mathrm{b}\right)\right), 4.66(1 \mathrm{H}, \mathrm{d}$, $J=4.9 \mathrm{~Hz}, \mathrm{H}-2(\mathrm{H}-7)), 4.71(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArCHOSi}), 4.73-$ $4.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.78-6.80(3 \mathrm{H}, \mathrm{m}$, ArH), 6.84-6.85 (2H, m, ArH), $6.90(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$; anal. C $69.94 \%, \mathrm{H}$ 8.92%, calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}, \mathrm{C} 69.82 \%$, H 8.96%.
(2S,3S,5S)-3-Allyl-2-(3,4-dimethoxyphenyl)-5-[(S)-(3,4-dimethoxyphenyl)(triisopropylsilyloxy)methyl]tetrahydropyran (17). To an ice-cooled solution of alcohol $15(0.22 \mathrm{~g}, 0.34 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(53$ $\mu \mathrm{L}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{MsCl}(29 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$, and then the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$, the organic phase was separated, washed with a saturated aqueous NaHCO_{3} and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration gave a crude mesylate. A mixture of the crude mesylate and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.40 \mathrm{~g}, 2.89 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was stirred at room temperature for 16 h , and then $\mathrm{H}_{2} \mathrm{O}$ and EtOAc were added. The organic phase was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:4) gave tetrahydropyran $17(0.11 \mathrm{~g}, 0.19 \mathrm{mmol}, 56 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-10\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95-1.05(21 \mathrm{H}$, $\mathrm{m}, i-\operatorname{Pr}), 1.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}(\mathrm{H}-9 \mathrm{~b})), 1.52$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3(\mathrm{H}-8)), 1.74\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{a}}\right), 1.78-1.83(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{~b}}, \mathrm{H}-5\left(\mathrm{H}-8^{\prime}\right)\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J=11.5,2.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}(\mathrm{H}-$ $\left.9^{\prime} \mathrm{a}\right)$), $3.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 3.91-3.94 (1H, overlapped, H-2 (H-7)), $4.59(1 \mathrm{H}$, br d, $J=11.5 \mathrm{~Hz}$, H-6b (H-9'b)), 4.75-4.81 (2H, m, CH2 $=\mathrm{CH}), 5.08(1 \mathrm{H}, \mathrm{d}, J=10.3$ $\mathrm{Hz}, \mathrm{ArCHOSi}), 5.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.77-6.91(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 6.93-6.94 (2H, m, ArH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.6,17.9,18.1,30.6$, $36.4,38.1,43.7,55.7,55.8,55.86,55.88,68.5,74.0,85.7,109.6,110.1$,
110.7, 116.3, 119.4, 119.9, 134.1, 135.5, 137.0, 148.4, 148.6, 148.9, 149.0; anal. C 69.99%, H 9.04\%, calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}, \mathrm{C} 69.82 \%$, H 8.96%. $(2 R, 3 R, 5 R)-5-[(R)]-17:[\alpha]^{20}{ }_{\mathrm{D}}+11\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
(2R,3R,5S)-3-Allyl-2-(3,4-dimethoxyphenyl)-5-[(S)-(3,4-dimethoxyphenyl)(triisopropylsilyloxy)methyl]tetrahydropyran (28). Yield 54%, colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-19\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.95-1.03(21 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}), 1.58-1.66\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-3(\mathrm{H}-8), \mathrm{H}_{2}-4\left(\mathrm{H}_{2}-9\right)\right.$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{a}}\right), 1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{~b}}\right), 2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5(\mathrm{H}-$ $\left.8^{\prime}\right)$), $3.32\left(1 \mathrm{H}, \mathrm{dd}, J=11.0,11.0, \mathrm{H}-6 \mathrm{a}\left(\mathrm{H}-9^{\prime} \mathrm{a}\right)\right), 3.77(1 \mathrm{H}, \mathrm{d}, J=9.3$ $\mathrm{Hz}, \mathrm{H}-2(\mathrm{H}-7)), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.39(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}(\mathrm{H}-$ $\left.9^{\prime} \mathrm{b}\right)$), $4.48(1 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{ArCHOSi}), 4.79-4.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right.$ $\mathrm{CH}), 5.51\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.75(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, \mathrm{ArH})$, $6.78-6.84(4 \mathrm{H}, \mathrm{m}, \operatorname{ArH}), 6.90(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \operatorname{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.5,18.1,32.2,36.5,41.0,45.1,55.8,71.5,77.4,85.3$, $109.7,109.8,110.2,110.8,116.2,119.1,120.1,133.5,135.6,136.0$, 148.2, 148.6, 148.7, 149.0; anal. C 69.54%, H 8.95\%, calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}, \mathrm{C} 69.82 \%$, H 8.96\%. $(2 S, 3 S, 5 R)-5-[(R)]-28:[\alpha]^{20}{ }_{\mathrm{D}}+19$ (c 0.2, CHCl_{3}).
(2S,3S,5S)-3-(3,4-Dimethoxycinnamyl)-2-(3,4-dimethoxyphenyl)-5-[(S)-(3,4- dimethoxyphenyl)(triisopropylsilyloxy)methyl]tetrahydropyran (18). A reaction solution of olefin $17(0.21 \mathrm{~g}, 0.36 \mathrm{mmol})$, 1-bromo-3,4-dimethoxybenzene $(0.17 \mathrm{~g}, 0.78 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.23 \mathrm{~mL}$, $1.65 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35 \mathrm{mg}, 0.050 \mathrm{mmol})$ in DMF $(0.5 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ under N_{2} gas for 6 h before addition of $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic solution was separated, washed with brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:6 and 1:1) gave recovered olefin $17(0.15$ $\mathrm{g}, 0.21 \mathrm{mmol}, 58 \%)$ and cinnamyl $18(88 \mathrm{mg}, 0.12 \mathrm{mmol}, 33 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}+38\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.88-$ $1.08(22 \mathrm{H}, \mathrm{m}, i-\mathrm{Pr}, \mathrm{H}-4 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 1.29(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{~b}(\mathrm{H}-9 \mathrm{~b})), 1.65$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3(\mathrm{H}-8)), 1.72-1.82\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\right), 1.95(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-5\left(\mathrm{H}-8^{\prime}\right)\right), 3.69\left(1 \mathrm{H}, \mathrm{dd}, J=11.5,2.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\left(\mathrm{H}-9^{\prime} \mathrm{a}\right)\right), 3.74$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.847\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.850(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97(1 \mathrm{H}, \mathrm{d}, J=$ $9.3 \mathrm{~Hz}, \mathrm{H}-2(\mathrm{H}-7)), 4.60\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\left(\mathrm{H}-9^{\prime} \mathrm{b}\right)\right), 5.10(1 \mathrm{H}$, d, $J=10.3 \mathrm{~Hz}, \mathrm{ArCHOSi}), 5.65\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\right), 6.04(1 \mathrm{H}$, d, $\left.J=16.1 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\right), 6.58(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.65-$ $6.66(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.68-6.78(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.84-6.92(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $6.97(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.6,18.0,18.1$, $31.1,35.4,39.2,43.8,55.6,55.7,55.79,55.83,55.9,68.5,73.9,85.8$, $108.6,110.2,110.8,111.1,118.6,119.4,120.0,125.7,130.8,131.0$, 134.1, 136.9, 148.29, 148.31, 148.67, 148.9, 149.0; anal. C 69.73%, H 8.41%, calcd for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{8} \mathrm{Si}, \mathrm{C} 69.97 \%$, H 8.39%. ($2 R, 3 R, 5 R$)-5-$[(R)]-18:[\alpha]^{20}{ }_{\mathrm{D}}-37\left(c 0.4, \mathrm{CHCl}_{3}\right)$.
(2S,3S,5S)-5-[(S)-(Hydroxy)(3,4-dimethoxyphenyl)methyl]-3-(3,4-dimethoxycinnamyl)-2-(3,4-dimethoxyphenyl)tetrahydropyran [(+)morinol B]. A solution of silyl ether ($88 \mathrm{mg}, 0.12 \mathrm{mmol}$) and TBAF ($0.21 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.21 mmol) in THF (2 mL) was stirred at room temperature for 3 h before addition of a saturated aqueous $\mathrm{NH}_{4}-$ Cl solution and EtOAc. The solution was separated, washed with a saturated aqueous CuSO_{4} solution, NaHCO_{3} solution, and brine, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration followed by silica gel column chromatography (EtOAc/hexane, 4:1) gave (+)-morinol B ($51 \mathrm{mg}, 0.12 \mathrm{mmol}$, $100 \%)$ as a colorless oil: $[\alpha]^{20} \mathrm{D}+69\left(c 0.7, \mathrm{CHCl}_{3}\right)$. NMR data agreed with that of described morinol B. ${ }^{1,2}$ HPLC, DAICEL chiral column OD-H, detected at $272 \mathrm{~nm}, 1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 50 \% i$-PrOH in hexane, $t_{\mathrm{R}} 19$ $\min ,>99 \%$ ee. $(-)$-Morinol B: $[\alpha]_{\mathrm{D}}{ }^{20}-69\left(c 1.0, \mathrm{CHCl}_{3}\right), t_{\mathrm{R}} 28 \mathrm{~min}$, $>99 \%$ ee.
(2R,3R,5S)-3-Allyl-5-[(S)-(hydroxy)(3,4-dimethoxyphenyl)methyl]-2-(3,4- dimethoxyphenyl)tetrahydropyran (29). Yield 94\%, a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-5\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(1 \mathrm{H}$, ddd, $J=12.1,12.1,12.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 1.56-1.71(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3(\mathrm{H}-8)$, $\left.\mathrm{H}-4 \mathrm{~b}(\mathrm{H}-9 \mathrm{~b}), \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{a}}\right), 1.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2 \mathrm{~b}}\right), 1.95(1 \mathrm{H}$, br s, OH$), 2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5\left(\mathrm{H}-8^{\prime}\right)\right), 3.37(1 \mathrm{H}, \mathrm{dd}, J=11.2,11.2$, H-6a (H-9'a)), $3.81(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-2(\mathrm{H}-7)), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.33$ $(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{ArCHOH}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=11.2,2.3 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$ (H-9'b)), 4.79-4.89 (2H, m, CH $\left.\mathrm{C}_{2}=\mathrm{CH}\right), 5.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 6.79-$ $6.90(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.5,36.4,41.0,43.3,55.8$, 55.9, 71.1, 85.2, 109.3, 110.2, 110.8, 116.3, 118.7, 120.1, 133.4, 135.4, 135.5, 148.6, 148.7, 148.95, 149.0; HREIMS $m / z 428.2197$ (calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6}, 428.2198\right) .(2 S, 3 S, 5 R)-5-[(R)]-29:[\alpha]^{20}{ }_{\mathrm{D}}+5\left(c 0.6, \mathrm{CHCl}_{3}\right)$.
(2R,3R,5S)-5-[(S)-(Hydroxy)(3,4-dimethoxyphenyl)methyl]-3-(3,4-dimethoxycinnamyl)-2-(3,4-dimethoxyphenyl)tetrahydropyran [(-)-

Morinol A]. Recovered olefin 29 (67\%) and (-)-morinol A (31\%) as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}-15\left(c 0.4, \mathrm{CHCl}_{3}\right)$; NMR data agreed with those of naturally occurring morinol A. HPLC, DAICEL chiral column OD-H, detected at $272 \mathrm{~nm}, 1 \mathrm{~mL} \mathrm{~min}{ }^{-1}, 50 \% i-\mathrm{PrOH}$ in hexane, $t_{\mathrm{R}} 41$ $\min ,>99 \%$ ee. $(+)$-Morinol A: $[\alpha]^{20}{ }_{\mathrm{D}}+15\left(c 0.6, \mathrm{CHCl}_{3}\right), t_{\mathrm{R}} 34 \mathrm{~min}$, $>99 \%$ ee.
(S)-4-Benzyl-3-\{(S)-2-[(S)-(hydroxy)(3,4-dimethoxyphenyl)methyl]-5-hexenoyl\}-2-oxazolidinone (30). To a solution of oxazolidinone 3 $(10.6 \mathrm{~g}, 0.039 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ were added Bu_{2} BOTf (48.6 $\mathrm{mL}, 1 \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.049 \mathrm{~mol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}(6.30 \mathrm{~mL}, 0.045 \mathrm{~mol})$ below $0^{\circ} \mathrm{C}$. After cooling to $-65^{\circ} \mathrm{C}$, a solution of 3,4-dimethoxybenzaldehyde ($7.61 \mathrm{~g}, 0.046 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added. The solution was stirred at $-65^{\circ} \mathrm{C}$ for 20 min and warmed to $0^{\circ} \mathrm{C}$. After stirring at 0 ${ }^{\circ} \mathrm{C}$ for 1 h , phosphate buffer $(50 \mathrm{~mL}), \mathrm{MeOH}(140 \mathrm{~mL})$, and $2: 1 \mathrm{MeOH} /$ $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(140 \mathrm{~mL})$ were added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was concentrated at $30^{\circ} \mathrm{C}$. The residue was dissolved in EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The organic phase was separated, washed with saturated aqueous NaHCO_{3} and brine, and dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}). Concentration followed by silica gel column chromatography (EtOAc/hexane, 1:3 and 1:1) gave syn product $30(17.1 \mathrm{~g}, 0.039 \mathrm{~mol}$, $100 \%)$ as a colorless oil: $[\alpha]^{20}{ }_{\mathrm{D}}+81\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}\right.$ of hexenoyl), $2.00-2.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}\right.$ and $\mathrm{H}_{2}-4$ of hexenoyl), $2.61-2.64\left(1 \mathrm{H}\right.$, overlapped, $\left.\mathrm{PhCH}_{2 \mathrm{a}}\right), 2.61(1 \mathrm{H}, \mathrm{d}, J=$ $2.9 \mathrm{~Hz}, \mathrm{OH}), 3.23\left(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{PhCH}_{2 \mathrm{~b}}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, J=$ $8.8,8.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{a}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97(1 \mathrm{H}$, $\mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~b}), 4.28-4.38(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ of hexenoyl, H-4), 4.78 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArCHOH}), 4.91-5.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right.$ of hexenoyl), $5.74(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-5$ of hexenoyl), $6.75(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.84(1 \mathrm{H}, \mathrm{d}, J=$ $8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.95(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.14-7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.21-7.30$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 27.2,31.7,37.9,49.9,55.7,55.8$, $55.9,65.9,75.1,109.3,110.7,115.2,118.5,127.3,128.9,129.3,134.2$, 135.2, 137.9, 148.5, 148.8, 153.1, 174.8; anal. C 68.10%, H 6.57%, N 3.00%, calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}, \mathrm{C} 68.32 \%$, $\mathrm{H} 6.65 \%$, N 3.19%.
(2S,3S,5R)-5-[(S)-(Hydroxy)(3,4-dimethoxyphenyl)methyl]-3-(3,4-dimethoxycinnamyl)-2-(3,4-dimethoxyphenyl)tetrahydropyran [(-)$7^{\prime}, \mathbf{8}^{\prime}$-erythro-morinol A] (31): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-28\left(c 0.3, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 1.78-1.88(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-3(\mathrm{H}-8), \mathrm{H}-4 \mathrm{~b}(\mathrm{H}-9 \mathrm{~b})), 2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2 \mathrm{a}}\left(\mathrm{H}-9^{\prime \prime} \mathrm{a}\right)\right), 2.05$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5\left(\mathrm{H}-8^{\prime}\right)\right), 2.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2 \mathrm{~b}}\left(\mathrm{H}-9^{\prime \prime} \mathrm{b}\right)\right), 3.28(1 \mathrm{H}$, dd, $J=11.4,11.4 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\left(\mathrm{H}^{\prime} 9^{\prime} \mathrm{a}\right)$), 3.84-3.89 (2 H , overlapped, H-2, H-6b (H-9'b)), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.864(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.870\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.38(1 \mathrm{H}, \mathrm{d}, J=7.3$ $\left.\mathrm{Hz}, \mathrm{ArCHOH}\left(\mathrm{H}^{\prime} 7^{\prime}\right)\right), 5.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\left(\mathrm{H}-8^{\prime \prime}\right)\right), 6.17(1 \mathrm{H}$, d, $\left.J=15.7 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\left(\mathrm{H}-7^{\prime \prime}\right)\right), 6.77-6.89$ (9H, m, ArH); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 32.7,35.9,41.8,43.6,70.7,76.1,85.6,108.6$,
$109.2,110.4,110.8,110.9,111.0,111.2,118.6,118.9,120.2,125.8$, 130.8, 131.3, 133.5, 135.3, 148.4, 148.9, 149.05, 149.1, 149.3; HREIMS $\mathrm{m} / \mathrm{z} 564.2725$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6}, 564.2724$).
(2R,3R,5R)-5-[(S)-(Hydroxy)(3,4-dimethoxyphenyl)methyl]-3-(3,4-dimethoxycinnamyl)-2-(3,4-dimethoxyphenyl)tetrahydropyran $\left[(+)-7^{\prime}, 8^{\prime}\right.$-erythro-morinol B] (32): colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}+34(c 0.4$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}(\mathrm{H}-9 \mathrm{a})), 1.80-1.92$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3(\mathrm{H}-8), \mathrm{H}-4 \mathrm{~b}(\mathrm{H}-9 \mathrm{~b})), 2.07(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH} 2 \mathrm{a}(\mathrm{H}-$ $9^{\prime \prime}$ a)), $2.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2 \mathrm{~b}}\left(\mathrm{H}^{\prime} 9^{\prime \prime} \mathrm{b}\right)\right), 2.42(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.45$ $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}\left(\mathrm{H}^{\prime} 8^{\prime}\right)\right), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,1.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\left(\mathrm{H}^{\prime} 9^{\prime} \mathrm{a}\right)\right)$, 3.86-3.92 (1H, overlapped, H-6b (H-9'b)), $3.856\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.861$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.99(1 \mathrm{H}, \mathrm{d}, J=10.1 \mathrm{~Hz}, \mathrm{H}-2,(\mathrm{H}-7)), 5.11(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\left.\mathrm{Hz}, \mathrm{ArCHOH}\left(\mathrm{H}^{\prime} 7^{\prime}\right)\right), 5.87\left(1 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\left(\mathrm{H}-8^{\prime \prime}\right)\right), 6.19(1 \mathrm{H}$, $\left.\mathrm{d}, J=15.7 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{CHCH}_{2}\left(\mathrm{H}_{-7} 7^{\prime \prime}\right)\right), 6.79-6.83(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $6.88(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.92-6.97(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 30.0,36.0,37.7,41.5,55.75,55.82,55.87,55.90,70.3,74.8$, $86.1,108.5,109.2,110.7,110.8,111.1,118.8,119.1,120.0,125.6$, 130.7, 131.2, 133.5, 136.0, 148.3, 148.5, 148.87, 148.94, 149.0, 149.1; HREIMS $m / z 564.2726\left(\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{6}\right.$ requires, 564.2724).

Acknowledgment. We thank the president of Ehime University for supporting this project. The 400 MHz NMR data were measured at INCS, Ehime University. We thank the staff at this Center for the MS measurements. We are also grateful to Marutomo Co., Iyo, Ehime, Japan.

References and Notes

(1) Su, B.-N.; Takaishi, Y. Chem. Lett. 1999, 1315-1316.
(2) Su, B.-N.; Takaishi, Y.; Kusumi, T. Tetrahedron 1999, 55, 1457114586.
(3) MacRae, W. D.; Towers, G. H. N. Tetrahedron 1984, 23, 12071220.
(4) Ayres, D. C.; Loike, J. D. Lignans; Cambridge University Press, 1990.
(5) Ralph, J.; Peng, J.; Lu, F.; Hatfield, R. D.; Helm, R. F. J Agric. Food Chem. 1999, 47, 2991-2996.
(6) Ward, R. S. Nat. Prod. Rep. 1999, 16, 75-96.
(7) Gage, J. R.; Evans, D. A. Organic Syntheses; Wiley: New York, 1993; Collect. Vol. 8, pp 339-343.
(8) Evans, D. A.; Tedrow, J. S. Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2002, 124, 392-393.
(9) Cesati, R. R., III; Armas, J.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 96-101.
(10) Yamauchi, S.; Uno, H. Org. Biomol. Chem. 2003, 1, 1323-1329.

NP060461J

[^0]: * To whom correspondence should be addressed. Tel: +81-89-946-9846. Fax: +81-89-977-4364. E-mail: syamauch@ agr.ehime-u.ac.jp.
 ${ }^{\dagger}$ Faculty of Agriculture, Ehime University.
 ${ }^{\ddagger}$ Integrated Center for Science, Tarumi Station, Ehime University.

